QUANTUM MECHANICS Lecture 24

Still about the angular momentum

Enrico Iacopini

December 3, 2019

D. J. Griffiths: paragraph 4.3

- In the previous lecture we have seen that the operators L^2 and L_z commute, which means that they are compatible observables.
- We can, therefore, look for simultaneous eigenfunctions of the two operators:

$$L^2f = \lambda f$$
 and $L_zf = \mu f$

where λ and μ are the L^2 and L_z eigenvalues, respectively.

- ① In the previous lecture we have seen that the operators L^2 and L_z commute, which means that they are compatible observables.
- We can, therefore, look for simultaneous eigenfunctions of the two operators:

$$L^2f = \lambda f$$
 and $L_zf = \mu f$

where λ and μ are the L^2 and L_z eigenvalues, respectively.

To solve the eigenvalue equations for L^2 and L_z , let us start by defining the following two (non hermitian) operators $L_{\pm} \equiv L_x \pm i L_y$.

We have

$$[L_z, L_{\pm}] = [L_z, L_x] \pm i [L_z, L_y] =$$

$$= i\hbar L_y \pm i (-i\hbar L_x) = i\hbar L_y \pm \hbar L_x =$$

$$= \pm \hbar (L_x \pm i L_y) = \pm \hbar L_{\pm}$$

Now, since, $[L^2, L_{\pm}] = [L^2, L_x \pm i L_y] = 0$, if f is an eigenfunction of L^2 for the eigenvalue λ , also $L_{\pm}f$ has the same property. In fact

$$L^{2}(L_{\pm}f) = L_{\pm}(L^{2}f) = L_{\pm}(\lambda f) = \lambda(L_{\pm}f)$$

2 Concerning L_z , we have instead that

$$L_{z}(L_{\pm}f) = (L_{z}L_{\pm} - L_{\pm}L_{z})f + L_{\pm}(L_{z}f) = = (\pm \hbar L_{\pm})f + L_{\pm}(\mu f) = = (\mu \pm \hbar)L_{\pm}f$$

which shows that $L\pm f$ is an eigenfunction of L_z for the eigenvalue $\mu \pm \hbar$.

• Now, since, $[L^2, L_{\pm}] = [L^2, L_x \pm i L_y] = 0$, if f is an eigenfunction of L^2 for the eigenvalue λ , also $L_{\pm}f$ has the same property. In fact

$$L^{2}(L_{\pm}f) = L_{\pm}(L^{2}f) = L_{\pm}(\lambda f) = \lambda(L_{\pm}f)$$

② Concerning L_z , we have instead that

$$L_{z}(L_{\pm}f) = (L_{z}L_{\pm} - L_{\pm}L_{z})f + L_{\pm}(L_{z}f) =$$

$$= (\pm \hbar L_{\pm})f + L_{\pm}(\mu f) =$$

$$= (\mu \pm \hbar)L_{\pm}f$$

which shows that $L\pm f$ is an eigenfunction of L_z for the eigenvalue $\mu \pm \hbar$.

- We call L_+ and L_- raising and lowering (ladder) operators, respectively.
- 2 According to the previous conclusions, starting from the eigenfunction f, corresponding to the eigenvalue λ of L^2 and μ of L_z , with the raising operator f.i. we can build the functions L_+f , $(L_+)^2f$, ... which are eigenfunctions of L_z for the eigenvalues $\mu + \hbar$, $\mu + 2\hbar$, ..., remaining eigenfunctions of L^2 for the initial eigenvalue λ .
- This "raising" chain will stop somewhere or not?

- We call L_+ and L_- raising and lowering (ladder) operators, respectively.
- 2 According to the previous conclusions, starting from the eigenfunction f, corresponding to the eigenvalue λ of L^2 and μ of L_z , with the raising operator f.i. we can build the functions L_+f , $(L_+)^2f$, ... which are eigenfunctions of L_z for the eigenvalues $\mu + \hbar$, $\mu + 2\hbar$, ..., remaining eigenfunctions of L^2 for the initial eigenvalue λ .
- This "raising" chain will stop somewhere or not?

- We call L_+ and L_- raising and lowering (ladder) operators, respectively.
- 2 According to the previous conclusions, starting from the eigenfunction f, corresponding to the eigenvalue λ of L^2 and μ of L_z , with the raising operator f.i. we can build the functions L_+f , $(L_+)^2f$, ... which are eigenfunctions of L_z for the eigenvalues $\mu + \hbar$, $\mu + 2\hbar$, ..., remaining eigenfunctions of L^2 for the initial eigenvalue λ .
- This "raising" chain will stop somewhere or not?

• As a matter of fact, since the L_z eigenfunction $(L_+)^n f$ is eigenfunction of L^2 for the eigenvalue λ , the **chain cannot continue indefinitely** because, on any function (and therefore also on $(L_+)^n f$...) we must have

$$\langle L^2 \rangle \geq \langle L_z^2 \rangle \Rightarrow \lambda \geq (\mu + n\hbar)^2$$

so, to stop the chain, there must be a "top" L_z eigenvector f_t for which $L_+f_t=0$.

2 Let $\hbar l_t$ be the highest eigenvalue of L_z for the given eigenvalue λ of L^2 . This means that there exists a function $f_t \neq 0$ such that

$$L_z f_t = \hbar l_t f_t; \quad L^2 f_t = \lambda f_t; \quad L_+ f_t = 0$$

• As a matter of fact, since the L_z eigenfunction $(L_+)^n f$ is eigenfunction of L^2 for the eigenvalue λ , the **chain cannot continue indefinitely** because, on any function (and therefore also on $(L_+)^n f$...) we must have

$$\langle L^2 \rangle \geq \langle L_z^2 \rangle \Rightarrow \lambda \geq (\mu + n\hbar)^2$$

so, to stop the chain, there must be a "top" L_z eigenvector f_t for which $L_+f_t=0$.

② Let $\hbar l_t$ be the highest eigenvalue of L_z for the given eigenvalue λ of L^2 . This means that there exists a function $f_t \neq 0$ such that

$$L_z f_t = \hbar l_t f_t; \quad L^2 f_t = \lambda f_t; \quad L_+ f_t = 0$$

But

$$L_{\pm}L_{\mp} = (L_{x} \pm iL_{y})(L_{x} \mp iL_{y}) =$$

$$= L_{x}^{2} + L_{y}^{2} \mp i(L_{x}L_{y} - L_{y}L_{x}) =$$

$$= L_{x}^{2} + L_{y}^{2} \mp i(i\hbar L_{z}) = L^{2} - L_{z}^{2} \pm \hbar L_{z}$$

$$\Rightarrow L^{2} = L_{\pm}L_{\mp} + L_{z}^{2} \mp \hbar L_{z}$$

@ therefore, using this result on f_t , we have

$$L^{2}f_{t} = (L_{-}L_{+} + L_{z}^{2} + \hbar L_{z})f_{t}$$

$$\Rightarrow \lambda = (\hbar l_{t})^{2} + \hbar(\hbar l_{t}) = \hbar^{2}(l_{t}^{2} + l_{t})$$

$$\Rightarrow \lambda = \hbar^{2} l_{t}(l_{t} + 1)$$

But

$$L_{\pm}L_{\mp} = (L_{x} \pm iL_{y})(L_{x} \mp iL_{y}) =$$

$$= L_{x}^{2} + L_{y}^{2} \mp i(L_{x}L_{y} - L_{y}L_{x}) =$$

$$= L_{x}^{2} + L_{y}^{2} \mp i(i\hbar L_{z}) = L^{2} - L_{z}^{2} \pm \hbar L_{z}$$

$$\Rightarrow L^{2} = L_{\pm}L_{\mp} + L_{z}^{2} \mp \hbar L_{z}$$

 $oldsymbol{2}$ therefore, using this result on f_t , we have

$$L^{2}f_{t} = (L_{-}L_{+} + L_{z}^{2} + \hbar L_{z})f_{t}$$

$$\Rightarrow \lambda = (\hbar l_{t})^{2} + \hbar(\hbar l_{t}) = \hbar^{2}(l_{t}^{2} + l_{t})$$

$$\Rightarrow \lambda = \hbar^{2} l_{t}(l_{t} + 1)$$

• For the same reason for which the raising chain must stop somewhere, also the lowering chain produced by the operators $(L_-)^n$ must do the same, because, again, we have to satisfy the condition

$$\langle L^2 \rangle \ge \langle L_z^2 \rangle \Rightarrow \lambda \ge (\mu - n\hbar)^2$$

② Let $\hbar l_b$ be the lowest eingenvalue of L_z for the given eigenvalue λ of L^2 . This means that there exists a function $f_b \neq 0$ such that

$$L_z f_b = \hbar l_b f_t$$
; $L^2 f_b = \lambda f_b$; $L_- f_b = 0$

• For the same reason for which the raising chain must stop somewhere, also the lowering chain produced by the operators $(L_{-})^n$ must do the same, because, again, we have to satisfy the condition

$$\langle L^2 \rangle \ge \langle L_z^2 \rangle \Rightarrow \lambda \ge (\mu - n\hbar)^2$$

② Let $\hbar l_b$ be the lowest eingenvalue of L_z for the given eigenvalue λ of L^2 . This means that there exists a function $f_b \neq 0$ such that

$$L_z f_b = \hbar l_b f_t;$$
 $L^2 f_b = \lambda f_b;$ $L_- f_b = 0$

But

$$L^{2}f_{b} = (L_{+}L_{-} + L_{z}^{2} - \hbar L_{z})f_{b}$$

$$\Rightarrow \lambda = (\hbar l_{b})^{2} - \hbar(\hbar l_{b}) = \hbar^{2}(l_{b}^{2} - l_{b})$$

$$\Rightarrow \lambda = \hbar^{2} l_{b}(l_{b} - 1)$$

2) The two equations that we have found concerning l_t , l_b and λ say that

$$\frac{\lambda}{\hbar^2} = l_t(l_t + 1) = l_b(l_b - 1)$$

which implies that

$$l_t = -l_b \equiv l > 0 \quad \Rightarrow \quad \lambda = l(l+1) \, \hbar^2$$

But

$$L^{2}f_{b} = (L_{+}L_{-} + L_{z}^{2} - \hbar L_{z})f_{b}$$

$$\Rightarrow \lambda = (\hbar l_{b})^{2} - \hbar(\hbar l_{b}) = \hbar^{2}(l_{b}^{2} - l_{b})$$

$$\Rightarrow \lambda = \hbar^{2} l_{b}(l_{b} - 1)$$

2 The two equations that we have found concerning l_t , l_b and λ say that

$$\frac{\lambda}{\hbar^2} = l_t(l_t + 1) = l_b(l_b - 1)$$

which implies that

$$l_t = -l_b \equiv l \ge 0 \quad \Rightarrow \quad \lambda = l(l+1) \, \hbar^2$$

As far as the eigenvalues of L_z , clearly they are such that

$$\mu = m\hbar; \quad m = -l, -l+1, \dots l-1, l$$

so, for a given l, they are in total N = 2l + 1, where N is integer, which implies that l (and therefore also m ...) must be **integer or** half-integer.

In conclusion, the simultaneous **eigenfunctions** of the observables L^2 and L_z are characterized by two quantum numbers l. m such that

$$L^2 f = \hbar^2 l(l+1)f;$$
 $L_z f = \hbar m f$

with

$$l = 0, \frac{1}{2}, 1, ...$$

 $m = -l, -l + 1, ... l - 1, l$

In conclusion, the simultaneous **eigenfunctions** of the observables L^2 and L_z are characterized by two quantum numbers l. m such that

$$L^2 f = \hbar^2 l(l+1)f;$$
 $L_z f = \hbar m f$

with

$$l = 0, \frac{1}{2}, 1, ...$$

 $m = -l, -l + 1, ... l - 1, l$

But, how do they look like these eigenfunctions?

- To find the explicit form of the simultaneous eigenfunctions of L^2 and L_z we need to write these operators in spherical coordinates.

$$\begin{split} L_z &= -i\hbar \frac{\partial}{\partial \phi} \\ L^2 &= -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] = \\ &= -\hbar^2 \hat{J} \end{split}$$

- To find the explicit form of the simultaneous eigenfunctions of L^2 and L_z we need to write these operators in spherical coordinates.
- It can be shown that

$$L_{z} = -i\hbar \frac{\partial}{\partial \phi}$$

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right] =$$

$$= -\hbar^{2} \hat{J}$$

• Therefore, the eigenvalue equation for L^2 reads

$$\begin{split} L^2 f_l^m &= \hbar^2 \, l(l+1) \, f_l^m \\ \Rightarrow \hat{J} \, f_l^m &= -l(l+1) \, f_l^m \end{split}$$

- But we have already seen this equation!
- In fact, this equation was already found when we have operated the separation of variables in the 3D time-independent Schrödinger equation.
- Its solutions are the spherical harmonics $Y_i^m(\theta, \phi)$.

• Therefore, the eigenvalue equation for L^2 reads

$$\begin{split} L^2 f_l^m &= \hbar^2 \, l(l+1) \, f_l^m \\ \Rightarrow \hat{J} \, f_l^m &= -l(l+1) \, f_l^m \end{split}$$

- But we have already seen this equation!

• Therefore, the eigenvalue equation for L^2 reads

$$L^{2} f_{l}^{m} = \hbar^{2} l(l+1) f_{l}^{m}$$

$$\Rightarrow \hat{J} f_{l}^{m} = -l(l+1) f_{l}^{m}$$

- But we have already seen this equation!
- In fact, this equation was already found when we have operated the separation of variables in the 3D time-independent Schrödinger equation.

• Therefore, the eigenvalue equation for L^2 reads

$$\begin{split} L^2 f_l^m &= \hbar^2 \, l(l+1) \, f_l^m \\ \Rightarrow \hat{J} \, f_l^m &= -l(l+1) \, f_l^m \end{split}$$

- But we have already seen this equation!
- In fact, this equation was already found when we have operated the separation of variables in the 3D time-independent Schrödinger equation.
- Its solutions are the spherical harmonics $Y_{l}^{m}(\theta,\phi)$.

• Let us recall the definition of the $Y_i^m(\theta, \phi)$:

$$Y_l^m(\theta,\phi) \equiv \epsilon \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_l^m(\cos\theta) e^{im\phi}$$

where l and m are integers, m is such that $|m| \le l$, $\epsilon = (-1)^m$ for m > 0 and $\epsilon = 1$ for m < 0.

$$-i\hbar \frac{\partial}{\partial \phi} Y_l^m(\theta, \phi) = m\hbar Y_l^m(\theta, \phi)$$

• Let us recall the definition of the $Y_i^m(\theta, \phi)$:

$$Y_l^m(\theta,\phi) \equiv \epsilon \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_l^m(\cos\theta) e^{im\phi}$$

where l and m are integers, m is such that |m| < l, $\epsilon = (-1)^m$ for m > 0 and $\epsilon = 1$ for m < 0.

Clearly, these functions are also eigenfunctions of $L_z = -i\hbar \frac{\partial}{\partial x}$, in fact

$$-i\hbar \frac{\partial}{\partial \phi} Y_l^m(\theta, \phi) = m\hbar Y_l^m(\theta, \phi)$$

We can, therefore, conclude that, when we have solved the time-independent Schrödinger equation in 3D by separation of variables in radial and polar coordinates, we were indeed constructing simultaneous eigenfunctions of the three commuting operators H, L^2 and L_z

$$H \psi = E \psi$$
; $L^2 \psi = \hbar^2 l(l+1)\psi$; $L_z \psi = \hbar m \psi$

The eigenfunctions

Enrico Iacopini

A final **observation** before leaving the subject:

the simultaneous eigenfunctions of L^2 and L_z , which we have seen to be the spherical harmonics, admit only values of l (and m) which are **integers**, whereas the algebraic theory previously developed, allows, in principle, also **half-integers** . . .

Which is the meaning af the half-integer solutions ?