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Exercise N.6

Exercise
In a bidimensional Hilbert space, e1 and e2 form
an orthonormal basis.

Consider the system of the two vectors
a1 ” e1 + i e2 and a2 ” i e1 ` e2.
Do a1 and a2 form a basis ? Explain.
Show that

f1 =
1
p
2
(e1 + e2); f2 =

1
p
2
(e1 ` e2)

form an orthonormal basis.
Write the 2ˆ 2 matrix A that allow to
express the vectors fi in terms of the vectors
ej, i.e. fi = Ajiej; i; j = 1; 2.
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Hermitian operators

1 We have seen that, in a basis fejg, the linear
operator Q̂ is completely determined by the
square matrix Qkj ”< ekjQ̂ej > such that

Q̂ej = Qkjek

2 To every linear operator Q̂ we can associate
its adjoint Q̂y by the following definition

8a; b 2 H :< ajQ̂y b >”< Q̂ajb >

3 The matrix (Qy)kj, describing the operator
Q̂y in the basis fejg, by definition, is given by

Q̂yej ” (Qy)kj ek; with (Qy)kj =< ekjQ̂yej >
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Hermitian operators

1 However, according to the definition of
adjoint operator, one has

(Qy)kj =< ekjQ̂yej >=< Q̂ekjej >=
=< Qnkenjej >= Q˜nk < enjej >= Q˜jk =

= (Q+)kj

2 Therefore, the matrix representing the
operator Q̂y in the orthonormal basis fejg is
the hermitian conjugate of the matrix which
represents, in the same basis, the operator Q̂:
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Hermitian operators

1 An operator Â is called self-adjoint
if Â = Ây. In this case

8a; b 2 H :< ajÂyb >=< ajÂb >=< Âyajb >

2 In particular, one has

< ajÂa >=< Âyaja >=< Âaja >=< ajÂa >˜

which means that the expectation value of
a self-adjoint operator Â, evalutated on any
vector a, is a real quantity.

3 But every physical observable Q̂ must have
an expectation value on any physical state
which is real...
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Hermitian operators and physical
observables

Since the condition of having a real expectation
value on any vector is a sufficient condition to
conclude that the operator is hermitian,

we can affirm that the physical observables
must be represented by hermitian operators.
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Hermitian operators and physical
observables

This is the reason why every physical observable
Q̂ = Q̂(x;`iℏ @

@x
), acting on the wave-functions,

is such that

< ¯1jQ̂¯2 >”
Z

dx¯˜1(x; t)
“

Q̂¯2
”

(x; t) =

=

Z

dx
“

Q̂¯˜1
”

(x; t)¯2(x; t) ”< Q̂¯1j¯2 >
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Unitary Operators

1 Another important class of linear operators
are the unitary operators.

2 The linear operator Û is unitary iff

Û Ûy = I = Ûy Û , Ûy = Û`1

3 These operators are such that

8a; b 2 H :< ÛajÛb >=< Ûy Û ajb >=< ajb >

which implies, in particular, that

8a 2 H : jjÛajj2 ”< ÛajÛa >=< aja >” jjajj2

and this property is sufficient for Û to be
unitary.
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Unitary Operators

1 If Û is unitary, then the matrix U representing
the linear operator Û in a basis fejg is also
unitary () UU+ = I); in fact

‹kj =< ekjej >=< ÛekjÛej >=< UskesjUtjet >=
= U˜skUtj < esjet >= U

+
ksUtj‹st = (U

+U)kj

, U+U = I , U+ = U`1

2 The viceversa is also true:
if in an orthonormal basis a linear operator is
described by an unitary matrix, then the
operator is unitary.
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Determinate states

1 As we already know, in QM, when we
measure a physical observable Q̂ on a state
¯, usually we can only predict the
probability of obtaining a specific value q.

2 Can we realize a physical state, such that
the measurement of the observable Q̂
gives, with certainty, some suitable real
value q ?
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Determinate states

1 As we already know, in QM, when we
measure a physical observable Q̂ on a state
¯, usually we can only predict the
probability of obtaining a specific value q.

2 Can we realize a physical state, such that
the measurement of the observable Q̂
gives, with certainty, some suitable real
value q ?
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Determinate states

1 This must be possible, because we know
that, if we start from a state ¯in, we
measure Q̂ and we obtain some value q,
then, if we measure again Q̂ on the new
physical state ¯q in which the previous one
has collapsed after the first measurement,
we obtain again the value q.

2 As far as the observable Q̂ is concerned, the
"collapsed" state ¯q has become a
"determinate" state .
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Determinate states

1 Which are the characteristics of the
(normalized) vector ¯q, representing such a
determinate state ?

2 Clearly, the expectation value of the
operator Q̂ (representing the observable Q)
evaluated on ¯q is equal to q, since every
measurement of Q̂ performed on the state
represented by ¯q has only q as possible
outcome:

< Q >=< ¯qjQ̂¯q >= q
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Determinate states

1 But since there is only one possible outcome
from the measurement, the standard
deviation of the probability distribution
defined by j¯qj2 is equal to zero:

ff2q =< ¯qj
“

Q̂` < Q >
”2
¯q >= 0

2 However, Q̂ is hermitian and the same is true
for Q̂` < Q >” Q̂` q since q is real,
therefore

0=<¯qj
“

Q̂` q
”2
¯q>=<

“

Q̂` q
”

¯qj
“

Q̂` q
”

¯q>=

= jj
“

Q̂` q
”

¯qjj2

3 and the only possibility is that
“

Q̂` q
”

¯q = 0 , Q̂¯q = q¯q
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for Q̂` < Q >” Q̂` q since q is real,
therefore

0=<¯qj
“

Q̂` q
”2
¯q>=<

“

Q̂` q
”

¯qj
“

Q̂` q
”

¯q>=

= jj
“

Q̂` q
”

¯qjj2

3 and the only possibility is that
“

Q̂` q
”

¯q = 0 , Q̂¯q = q¯q

Enrico Iacopini QUANTUM MECHANICS Lecture 18 November 12, 2019 13 / 21



QUANTUM
MECHANICS
Lecture 18

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Determinate states

1 But since there is only one possible outcome
from the measurement, the standard
deviation of the probability distribution
defined by j¯qj2 is equal to zero:

ff2q =< ¯qj
“

Q̂` < Q >
”2
¯q >= 0

2 However, Q̂ is hermitian and the same is true
for Q̂` < Q >” Q̂` q since q is real,
therefore

0=<¯qj
“

Q̂` q
”2
¯q>=<

“

Q̂` q
”

¯qj
“

Q̂` q
”

¯q>=

= jj
“

Q̂` q
”

¯qjj2

3 and the only possibility is that
“

Q̂` q
”

¯q = 0 , Q̂¯q = q¯q

Enrico Iacopini QUANTUM MECHANICS Lecture 18 November 12, 2019 13 / 21



QUANTUM
MECHANICS
Lecture 18

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Determinate states

The equation

Q̂¯q = q¯q with ¯q 6= 0

is called the eigenvalue equation for the
operator Q̂ and ¯q is an eigenfunction
(eigenvector) of Q̂, corresponding to the
eigenvalue q.
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Determinate states

1 Now, be very careful.

2 A frequent mistake is to think that, when you
measure a physical observable Q̂ on a
physical state described by the (normalized)
vector ¯, the vector originated after the
measurement is Q̂¯.

3 This is false !
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Determinate states

If and only if ¯ is an eigenvector of the
operator Q̂ for some eigenvalue q, we have

Q̂¯ = q¯

But, also in this case, it is not true that the
vector describing the physical state after the
measurement of Q̂ is q¯, but it remains ¯.
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Eigenfunctions and eigenvalues

Let us observe, now, that
1 If ¯ is an eigenvector of Q̂ for the eigenvalue
q, then also ¸¯ (with ¸ 6= 0 ...) has the
same property.

2 It may happen that, for a given eigenvalue q,
there are two or more linearly
independent eigenvectors.

3 In this case, any linear combination of
these eigenvectors is an eigenvector of Q̂
for the eigenvalue q and we say that the
eigenvalue q is degenerate.

4 The set of all the eigenvalues of the
hermitian operator Q̂ is its spectrum.
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Eigenfunctions and eigenvalues

Before entering in more general details, let us
recall some conclusions that we have already
drawn concerning the solution of an
"ante-litteram" eigenvalue problem,
the time-independent Schrödinger equation

Ĥ¯ = E¯

where
Ĥ is the hamiltonian operator;
E the energy eigenvalue;
 the corresponding eigenvector
(eigenfunction).
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Eigenfunctions and eigenvalues

1 In the case, for instance, of the harmonic
oscillator, the energy spectrum is

(

En =

 

n+
1

2

!

ℏ!; n = 0; 1; ::::
)

2 The corresponding normalized eigenfunctions
are

 n(x) =

 

m!

ℏı

!

1
4 1
p
2n n!

e`
1
2
m!
ℏ x2 Hn

0

@x

s

m!

ℏ

1

A

3 and the eigenvalues are non-degenerate.
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Eigenfunctions and eigenvalues

1 As another example, we can consider the
hamiltonian Ĥ associated to the infinite
square well between 0 and +a.
In this case, the spectrum of Ĥ is

8

<

:

En =
ℏ2

2m

 

nı

a

!2

; n = 1; 2; ::::

9

=

;

2 The normalized eigenfunctions are

 n(x) =

v

u

u

t

2

a
sin

 

nıx

a

!

3 and the eigenvalues are still non-degenerate.
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8

<

:

En =
ℏ2

2m

 

nı

a

!2

; n = 1; 2; ::::

9

=

;

2 The normalized eigenfunctions are

 n(x) =

v

u

u

t

2

a
sin

 

nıx

a

!

3 and the eigenvalues are still non-degenerate.

Enrico Iacopini QUANTUM MECHANICS Lecture 18 November 12, 2019 20 / 21



QUANTUM
MECHANICS
Lecture 18

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Still about the eigenvectors of a
hermitian operator

1 In general, we can conclude that the
determinate states of any observable Q are
described by the eigenvectors of the
hermitian operator Q̂ representing that
particular observable.

2 But, as we will see in the next lecture,
the opposite is not always true !
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