Enrico Iacopini

QUANTUM MECHANICS Lecture 18 Hermitian and Unitary operators Determinate states Eigenfunctions and eigenvalues

Enrico Iacopini

November 12, 2019

D. J. Griffiths: paragraphs 3.3

Enrico Iacopini

QUANTUM MECHANICS Lecture 18 November 12, 2019

1 / 21

Exercise N.6

Exercise

In a bidimensional Hilbert space, \mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis.

- Consider the system of the two vectors $\mathbf{a}_1 \equiv \mathbf{e}_1 + i \, \mathbf{e}_2$ and $\mathbf{a}_2 \equiv i \, \mathbf{e}_1 - \mathbf{e}_2$. Do \mathbf{a}_1 and \mathbf{a}_2 form a basis ? Explain.
- Show that

$$\mathbf{f}_1 = \frac{1}{\sqrt{2}}(\mathbf{e}_1 + \mathbf{e}_2); \quad \mathbf{f}_2 = \frac{1}{\sqrt{2}}(\mathbf{e}_1 - \mathbf{e}_2)$$

form an orthonormal basis.

• Write the 2 \times 2 matrix **A** that allow to express the vectors \mathbf{f}_i in terms of the vectors e_j , i.e. $f_i = A_{ji}e_j$; i, j = 1, 2.

• We have seen that, in a basis $\{\mathbf{e}_j\}$, the linear operator \hat{Q} is completely determined by the square matrix $Q_{kj} \equiv \langle \mathbf{e}_k | \hat{Q} \mathbf{e}_j \rangle$ such that

$$\hat{Q}\mathbf{e}_j = Q_{kj}\mathbf{e}_k$$

2 To every linear operator \hat{Q} we can associate its **adjoint** \hat{Q}^{\dagger} by the following definition

 $\forall \mathbf{a}, \mathbf{b} \in \mathcal{H} :< \mathbf{a} | \hat{Q}^{\dagger} \mathbf{b} > \equiv < \hat{Q} \mathbf{a} | \mathbf{b} >$

3 The matrix $(Q^{\dagger})_{kj}$, describing the operator \hat{Q}^{\dagger} in the basis $\{\mathbf{e}_{j}\}$, by definition, is given by

 $\widehat{Q}^{\dagger} \mathbf{e}_j \equiv (Q^{\dagger})_{kj} \, \mathbf{e}_k, \quad with \quad (Q^{\dagger})_{kj} = < \mathbf{e}_k |\widehat{Q}^{\dagger} \mathbf{e}_j >$

Enrico Iacopini

QUANTUM MECHANICS Lecture 18 November 12, 2019

イロト 不得 トイヨト イヨト ニヨー

QUANTUM MECHANICS Lecture 18

• We have seen that, in a basis $\{\mathbf{e}_j\}$, the linear operator \hat{Q} is completely determined by the square matrix $Q_{kj} \equiv \langle \mathbf{e}_k | \hat{Q} \mathbf{e}_j \rangle$ such that

$$\hat{Q}\mathbf{e}_j = Q_{kj}\mathbf{e}_k$$

2 To every linear operator \hat{Q} we can associate its adjoint \hat{Q}^{\dagger} by the following definition

 $\forall a, b \in \mathcal{H} : < a | \hat{Q}^{\dagger} b > \equiv < \hat{Q} a | b >$

³ The matrix $(Q^{\dagger})_{kj}$, describing the operator \hat{Q}^{\dagger} in the basis $\{\mathbf{e}_{j}\}$, by definition, is given by

 $\widehat{Q}^{\dagger} \mathbf{e}_{j} \equiv (Q^{\dagger})_{kj} \, \mathbf{e}_{k}, \quad with \quad (Q^{\dagger})_{kj} = <\mathbf{e}_{k} |\widehat{Q}^{\dagger} \mathbf{e}_{j}>$

Enrico Iacopini

QUANTUM MECHANICS Lecture 18 November 12, 2019

イロト 不得 トイヨト イヨト ニヨー

QUANTUM MECHANICS Lecture 18

• We have seen that, in a basis $\{\mathbf{e}_j\}$, the linear operator \hat{Q} is completely determined by the square matrix $Q_{kj} \equiv \langle \mathbf{e}_k | \hat{Q} \mathbf{e}_j \rangle$ such that

$$\hat{Q}\mathbf{e}_j = Q_{kj}\mathbf{e}_k$$

2 To every linear operator \hat{Q} we can associate its adjoint \hat{Q}^{\dagger} by the following definition

$$orall \mathbf{a}, \ \mathbf{b} \in \mathcal{H} : < \mathbf{a} | \hat{Q}^{\dagger} \ \mathbf{b} > \equiv < \hat{Q} \mathbf{a} | \mathbf{b} > \mathbf{c}$$

Solution The matrix $(Q^{\dagger})_{kj}$, describing the operator \hat{Q}^{\dagger} in the basis $\{\mathbf{e}_j\}$, by definition, is given by

$$\hat{Q}^{\dagger} \mathbf{e}_{j} \equiv (Q^{\dagger})_{kj} \, \mathbf{e}_{k}, \hspace{0.3cm} with \hspace{0.3cm} (Q^{\dagger})_{kj} = <\mathbf{e}_{k} |\hat{Q}^{\dagger} \mathbf{e}_{j}>$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

QUANTUM MECHANICS Lecture 18

MECHANICS Lecture 18

Enrico Iacopini

However, according to the definition of adjoint operator, one has

$$(Q^{\dagger})_{kj} = \langle \mathbf{e}_k | \hat{Q}^{\dagger} \mathbf{e}_j \rangle = \langle \hat{Q} \mathbf{e}_k | \mathbf{e}_j \rangle =$$

= $\langle Q_{nk} \mathbf{e}_n | \mathbf{e}_j \rangle = Q_{nk}^* \langle \mathbf{e}_n | \mathbf{e}_j \rangle = Q_{jk}^* =$
= $(Q^{\dagger})_{kj}$

2 Therefore, the matrix representing the operator \hat{Q}^{\dagger} in the orthonormal basis $\{e_j\}$ is the hermitian conjugate of the matrix which represents, in the same basis, the operator \hat{Q} .

< ロ > < 同 > < 三 > < 三 > <

QUANTUM MECHANICS Lecture 18

Enrico Iacopini

However, according to the definition of adjoint operator, one has

$$(Q^{\dagger})_{kj} = \langle \mathbf{e}_k | \hat{Q}^{\dagger} \mathbf{e}_j \rangle = \langle \hat{Q} \mathbf{e}_k | \mathbf{e}_j \rangle =$$

= $\langle Q_{nk} \mathbf{e}_n | \mathbf{e}_j \rangle = Q_{nk}^* \langle \mathbf{e}_n | \mathbf{e}_j \rangle = Q_{jk}^* =$
= $(Q^{+})_{kj}$

2 Therefore, the matrix representing the operator \hat{Q}^{\dagger} in the orthonormal basis $\{\mathbf{e}_{j}\}$ is the hermitian conjugate of the matrix which represents, in the same basis, the operator \hat{Q} .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

QUANTUM MECHANICS Lecture 18

Enrico Iacopini

• An operator \hat{A} is called **self-adjoint** if $\hat{A} = \hat{A}^{\dagger}$. In this case

 $\forall \mathbf{a}, \mathbf{b} \in \mathcal{H} : < \mathbf{a} | \hat{A}^{\dagger} \mathbf{b} > = < \mathbf{a} | \hat{A} \mathbf{b} > = < \hat{A}^{\dagger} \mathbf{a} | \mathbf{b} >$

In particular, one has

 $< \mathsf{a}|\hat{A}\mathsf{a}> = <\hat{A}^\dagger \mathsf{a}|\mathsf{a}> = <\hat{A}\mathsf{a}|\mathsf{a}> = <\mathsf{a}|\hat{A}\mathsf{a}>^*$

which means that the **expectation value** of a self-adjoint operator \hat{A} , evaluated on any vector **a**, **is a real quantity**.

But every physical observable Q must have an expectation value on any physical state which is real...

• An operator \hat{A} is called **self-adjoint** if $\hat{A} = \hat{A}^{\dagger}$. In this case

 $\forall a, b \in \mathcal{H} : \langle a | \hat{A}^{\dagger}b \rangle = \langle a | \hat{A}b \rangle = \langle \hat{A}^{\dagger}a | b \rangle$

In particular, one has

$$< \mathbf{a}|\hat{A}\mathbf{a}> = <\hat{A}^{\dagger}\mathbf{a}|\mathbf{a}> = <\hat{A}\mathbf{a}|\mathbf{a}> = <\mathbf{a}|\hat{A}\mathbf{a}>^{*}$$

which means that the **expectation value** of a self-adjoint operator \hat{A} , evaluated on any vector **a**, **is a real quantity**.

But every physical observable Q must have an expectation value on any physical state which is real... QUANTUM MECHANICS Lecture 18

• An operator \hat{A} is called **self-adjoint** if $\hat{A} = \hat{A}^{\dagger}$. In this case

 $\forall a, b \in \mathcal{H} : \langle a | \hat{A}^{\dagger}b \rangle = \langle a | \hat{A}b \rangle = \langle \hat{A}^{\dagger}a | b \rangle$

In particular, one has

$$< \mathbf{a}|\hat{A}\mathbf{a}> = <\hat{A}^{\dagger}\mathbf{a}|\mathbf{a}> = <\hat{A}\mathbf{a}|\mathbf{a}> = <\mathbf{a}|\hat{A}\mathbf{a}>^{*}$$

which means that the **expectation value** of a self-adjoint operator \hat{A} , evaluated on any vector **a**, **is a real quantity**.

But every physical observable Q must have an expectation value on any physical state which is real...

Enrico Iacopini

QUANTUM MECHANICS Lecture 18

Hermitian operators and physical observables

Since the condition of having a real expectation value on any vector is a sufficient condition to conclude that the operator is hermitian,

we can affirm that the physical observables must be represented by hermitian operators.

Enrico Iacopini

Hermitian operators and physical observables

This is the reason why every physical observable $\hat{Q} = \hat{Q}(x, -i\hbar\frac{\partial}{\partial x})$, acting on the wave-functions, is such that

$$\langle \Psi_1 | \hat{Q} \Psi_2 \rangle \equiv \int dx \, \Psi_1^*(x,t) \left(\hat{Q} \Psi_2 \right)(x,t) =$$
$$= \int dx \, \left(\hat{Q} \Psi_1^* \right)(x,t) \, \Psi_2(x,t) \equiv \langle \hat{Q} \Psi_1 | \Psi_2 \rangle$$

Enrico Iacopini

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2, 2019 7 / 21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another important class of linear operators are the **unitary operators**. **2** The linear operator \hat{U} is unitary iff QUANTUM MECHANICS Lecture 18

- Another important class of linear operators are the unitary operators.
- 2 The linear operator \hat{U} is unitary iff

$$\hat{U}\,\hat{U}^{\dagger} = I = \hat{U}^{\dagger}\,\hat{U} \iff \hat{U}^{\dagger} = \hat{U}^{-1}$$

These operators are such that

 $orall \mathbf{a}, \, \mathbf{b} \in \mathcal{H} :< \hat{U} \mathbf{a} | \hat{U} \mathbf{b} > = < \hat{U}^{\dagger} \, \hat{U} \, \mathbf{a} | \mathbf{b} > = < \mathbf{a} | \mathbf{b} >$

which implies, in particular, that

 $\forall \mathbf{a} \in \mathcal{H} : ||\hat{U}\mathbf{a}||^2 \equiv < \hat{U}\mathbf{a}|\hat{U}\mathbf{a} > = < \mathbf{a}|\mathbf{a} > \equiv ||\mathbf{a}||^2$

and this property is sufficient for \hat{U} to be unitary.

Enrico Iacopini

- Another important class of linear operators are the unitary operators.
- 2 The linear operator \hat{U} is unitary iff

$$\hat{U}\,\hat{U}^{\dagger} = I = \hat{U}^{\dagger}\,\hat{U} \iff \hat{U}^{\dagger} = \hat{U}^{-1}$$

These operators are such that

 $\forall \mathbf{a}, \mathbf{b} \in \mathcal{H} : < \hat{U}\mathbf{a}|\hat{U}\mathbf{b} > = < \hat{U}^{\dagger}\hat{U}\mathbf{a}|\mathbf{b} > = < \mathbf{a}|\mathbf{b} >$

which implies, in particular, that

 $\forall \mathbf{a} \in \mathcal{H} : ||\hat{U}\mathbf{a}||^2 \equiv <\hat{U}\mathbf{a}|\hat{U}\mathbf{a}> = <\mathbf{a}|\mathbf{a}> \equiv ||\mathbf{a}||^2$

and this property is sufficient for \hat{U} to be unitary.

Enrico Iacopini

QUANTUM MECHANICS Lecture 18

MECHANICS Lecture 18

Enrico Iacopini

If \hat{U} is unitary, then the matrix U representing the linear operator \hat{U} in a basis $\{\mathbf{e}_j\}$ is also unitary ($\Rightarrow UU^+ = I$); in fact

$$\delta_{kj} = \langle \mathbf{e}_k | \mathbf{e}_j \rangle = \langle \hat{U} \mathbf{e}_k | \hat{U} \mathbf{e}_j \rangle = \langle U_{sk} \mathbf{e}_s | U_{tj} \mathbf{e}_t \rangle =$$

= $U_{sk}^* U_{tj} \langle \mathbf{e}_s | \mathbf{e}_t \rangle = U_{ks}^+ U_{tj} \delta_{st} = (U^+ U)_{kj}$
 $\Leftrightarrow U^+ U = I \quad \Leftrightarrow \quad U^+ = U^{-1}$

The viceversa is also true: if in an orthonormal basis a linear operator is described by an unitary matrix, then the operator is unitary.

イロト 不得 トイヨト イヨト ニヨー

MECHANICS Lecture 18

Enrico Iacopini

If \hat{U} is unitary, then the matrix U representing the linear operator \hat{U} in a basis $\{\mathbf{e}_j\}$ is also unitary ($\Rightarrow UU^+ = I$); in fact

$$\delta_{kj} = \langle \mathbf{e}_k | \mathbf{e}_j \rangle = \langle \hat{U} \mathbf{e}_k | \hat{U} \mathbf{e}_j \rangle = \langle U_{sk} \mathbf{e}_s | U_{tj} \mathbf{e}_t \rangle =$$

= $U_{sk}^* U_{tj} \langle \mathbf{e}_s | \mathbf{e}_t \rangle = U_{ks}^+ U_{tj} \delta_{st} = (U^+ U)_{kj}$
 $\Leftrightarrow U^+ U = I \quad \Leftrightarrow \quad U^+ = U^{-1}$

The viceversa is also true: if in an orthonormal basis a linear operator is described by an unitary matrix, then the operator is unitary.

Enrico Iacopini

- As we already know, in *QM*, when we measure a physical observable *Q̂* on a state Ψ, usually we can only predict the probability of obtaining a specific value *q*.
- Can we realize a physical state, such that the measurement of the observable Q gives, with certainty, some suitable real value q ?

AECHANICS Lecture 18

Enrico Iacopini

- As we already know, in QM, when we measure a physical observable Q

 φ, usually we can only predict the probability of obtaining a specific value q.
- Can we realize a physical state, such that the measurement of the observable Q gives, with certainty, some suitable real value q ?

3

Lecture 18

Enrico Iacopini

- Can we realize a physical state, such that the measurement of the observable Q gives, with certainty, some suitable real value q ?

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

MECHANICS Lecture 18

Enrico Iacopini

- This must be possible, because we know that, if we start from a state Ψ_{in} , we measure \hat{Q} and we obtain some value q, then, if we measure again \hat{Q} on the new physical state Ψ_q in which the previous one has collapsed after the first measurement, we obtain again the value q.
- 2 As far as the observable \hat{Q} is concerned, the "collapsed" state Ψ_q has become a "determinate" state .

3

MECHANICS Lecture 18

Enrico Iacopini

- This must be possible, because we know that, if we start from a state Ψ_{in} , we measure \hat{Q} and we obtain some value q, then, if we measure again \hat{Q} on the new physical state Ψ_q in which the previous one has collapsed after the first measurement, we obtain again the value q.
- 2 As far as the observable \hat{Q} is concerned, the "collapsed" state Ψ_q has become a <u>"determinate"</u> state .

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Which are the characteristics of the (normalized) vector Ψ_q , representing such a *determinate* state ?
- Clearly, the **expectation value** of the operator \hat{Q} (representing the observable Q) evaluated on Ψ_q is equal to q, since every measurement of \hat{Q} performed on the state represented by Ψ_q has only q as possible outcome:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Which are the characteristics of the

Determinate states

(normalized) vector Ψ_q , representing such a *determinate* state ?

Clearly, the **expectation value** of the operator \hat{Q} (representing the observable Q) evaluated on Ψ_q is equal to q, since every measurement of \hat{Q} performed on the state represented by Ψ_q has only q as possible outcome:

$$< Q > = < \Psi_q | \hat{Q} \Psi_q > = q$$

Enrico Iacopini

QUANTUM MECHANICS Lecture 18

• But since there is only one possible outcome from the measurement, the standard deviation of the probability distribution defined by $|\Psi_q|^2$ is equal to zero:

$$\sigma_q^2 = < \mathbf{\Psi}_q | \left(\widehat{Q} - < Q > \right)^2 \mathbf{\Psi}_q > = 0$$

e However, \hat{Q} is hermitian and the same is true for $\hat{Q} - \langle Q \rangle \equiv \hat{Q} - q$ since q is real, therefore

$$0 = < \Psi_q | (\hat{Q} - q)^2 \Psi_q > = < (\hat{Q} - q) \Psi_q | (\hat{Q} - q) \Psi_q > = = || (\hat{Q} - q) \Psi_q ||^2$$

and the only possibility is that

$$(\widehat{Q} - q) \Psi_q = \mathbf{0} \iff \widehat{Q} \Psi_q = q \Psi_q$$

Enrico Iacopini

イロト 不得下 イヨト イヨト 二日

13 / 21

QUANTUM IECHANICS Lecture 18

But since there is only one possible outcome from the measurement, the standard deviation of the probability distribution defined by $|\Psi_q|^2$ is equal to zero:

$$\sigma_q^2 = < \mathbf{\Psi}_q | \left(\hat{Q} - < Q > \right)^2 \mathbf{\Psi}_q > = 0$$

However, Q is hermitian and the same is true for $\hat{Q} - \langle Q \rangle \equiv \hat{Q} - q$ since q is real. therefore

$$0 = \langle \Psi_q | (\hat{Q} - q)^2 \Psi_q \rangle = \langle (\hat{Q} - q) \Psi_q | (\hat{Q} - q) \Psi_q \rangle =$$

= || $(\hat{Q} - q) \Psi_q ||^2$

$$(\widehat{Q} - q) \Psi_q = \mathbf{0} \iff \widehat{Q} \Psi_q = q \Psi_q$$

Enrico Iacopini

3

• But since there is only one possible outcome from the measurement, the standard deviation of the probability distribution defined by $|\Psi_q|^2$ is equal to zero:

$$\sigma_q^2 = < \mathbf{\Psi}_q | \left(\hat{Q} - < Q > \right)^2 \mathbf{\Psi}_q > = 0$$

e However, Q̂ is hermitian and the same is true for Q̂− < Q >≡ Q̂ − q since q is real, therefore

$$0 = \langle \Psi_q | (\hat{Q} - q)^2 \Psi_q \rangle = \langle (\hat{Q} - q) \Psi_q | (\hat{Q} - q) \Psi_q \rangle =$$

= || $(\hat{Q} - q) \Psi_q ||^2$

and the only possibility is that

$$(\hat{Q} - q) \Psi_q = \mathbf{0} \iff \hat{Q} \Psi_q = q \Psi_q$$

Enrico Iacopini

QUANTUM IECHANICS Lecture 18

Lecture 18

Enrico Iacopini

The equation

$$\hat{Q} \Psi_q = q \Psi_q$$
 with $\Psi_q \neq 0$

is called the <u>eigenvalue equation</u> for the operator \hat{Q} and Ψ_q is an eigenfunction (eigenvector) of \hat{Q} , corresponding to the eigenvalue q.

イロト 不得 トイヨト イヨト ニヨー

Enrico Iacopini

Now, be very careful.

A frequent mistake is to think that, when you measure a physical observable Q on a physical state described by the (normalized) vector Ψ, the vector originated after the measurement is QΨ.

This is false !

Enrico Iacopini

3

Enrico Iacopini

Now, be very careful.

2 A frequent mistake is to think that, when you measure a physical observable \hat{Q} on a physical state described by the (normalized) vector Ψ , the vector originated after the measurement is $\hat{Q}\Psi$.

This is false !

3

Enrico Iacopini

Now, be very careful.

2 A frequent mistake is to think that, when you measure a physical observable \hat{Q} on a physical state described by the (normalized) vector Ψ , the vector originated after the measurement is $\hat{Q}\Psi$.

This is false !

3

Lecture 18

Enrico Iacopini

If and only if Ψ is an eigenvector of the operator \hat{Q} for some eigenvalue q, we have

$$\hat{Q}\Psi = q\Psi$$

But, also in this case, it is not true that the vector describing the physical state after the measurement of \hat{Q} is $q \Psi$, but it remains Ψ .

3

Let us observe, now, that

- If Ψ is an eigenvector of \hat{Q} for the eigenvalue q, then also $\alpha \Psi$ (with $\alpha \neq 0$...) has the same property.
- It may happen that, for a given eigenvalue q, there are two or more linearly independent eigenvectors.
- In this case, any linear combination of these eigenvectors is an eigenvector of Q for the eigenvalue q and we say that the eigenvalue q is degenerate.
- The set of all the eigenvalues of the hermitian operator Q is its spectrum.

QUANTUM MECHANICS Lecture 18

Enrico Iacopini

イロト 不得 トイヨト イヨト ニヨー

Let us observe, now, that

- If Ψ is an eigenvector of \hat{Q} for the eigenvalue q, then also $\alpha \Psi$ (with $\alpha \neq 0$...) has the same property.
- It may happen that, for a given eigenvalue q, there are two or more linearly independent eigenvectors.
- In this case, any linear combination of these eigenvectors is an eigenvector of Q for the eigenvalue q and we say that the eigenvalue q is degenerate.
- The set of all the eigenvalues of the hermitian operator Q is its spectrum.

QUANTUM MECHANICS Lecture 18

Enrico Iacopini

3

Let us observe, now, that

- If Ψ is an eigenvector of \hat{Q} for the eigenvalue q, then also $\alpha \Psi$ (with $\alpha \neq 0$...) has the same property.
- It may happen that, for a given eigenvalue q, there are two or more linearly independent eigenvectors.
- In this case, any linear combination of these eigenvectors is an eigenvector of Q for the eigenvalue q and we say that the eigenvalue q is degenerate.
- The set of all the eigenvalues of the hermitian operator Q is its spectrum.

QUANTUM MECHANICS Lecture 18

Enrico Iacopini

3

Let us observe, now, that

- If Ψ is an eigenvector of \hat{Q} for the eigenvalue q, then also $\alpha \Psi$ (with $\alpha \neq 0$...) has the same property.
- It may happen that, for a given eigenvalue q, there are two or more linearly independent eigenvectors.
- In this case, any linear combination of these eigenvectors is an eigenvector of Q for the eigenvalue q and we say that the eigenvalue q is degenerate.
- The set of all the eigenvalues of the hermitian operator Q is its spectrum.

QUANTUM MECHANICS Lecture 18

Enrico Iacopini

イロト 不得 トイヨト イヨト 二日

Let us observe, now, that

- If Ψ is an eigenvector of \hat{Q} for the eigenvalue q, then also $\alpha \Psi$ (with $\alpha \neq 0$...) has the same property.
- It may happen that, for a given eigenvalue q, there are two or more linearly independent eigenvectors.
- In this case, any linear combination of these eigenvectors is an eigenvector of Q for the eigenvalue q and we say that the eigenvalue q is degenerate.
- ^(a) The set of all the eigenvalues of the hermitian operator \hat{Q} is its **spectrum**.

Enrico Iacopini

3

Before entering in more general details, let us recall some conclusions that we have already drawn concerning the solution of an "ante-litteram" eigenvalue problem, the time-independent Schrödinger equation

$$\hat{H}\Psi = E \Psi$$

where

- \hat{H} is the hamiltonian operator;
- E the energy eigenvalue;
- ψ the corresponding eigenvector (eigenfunction).

QUANTUM MECHANICS Lecture 18

Enrico Iacopini

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

AECHANICS Lecture 18

Enrico Iacopini

In the case, for instance, of the **harmonic oscillator**, the energy spectrum is

$$\left\{ E_n = \left(n + rac{1}{2}
ight)\hbar\omega; \ n = 0, 1,
ight\}$$

The corresponding normalized eigenfunctions are

$$\psi_n(x) = \left(rac{m\omega}{\hbar\pi}
ight)^{rac{1}{4}} rac{1}{\sqrt{2^n\,n!}} e^{-rac{1}{2}rac{m\omega}{\hbar}\,x^2} \; H_n\left(x\sqrt{rac{m\omega}{\hbar}}
ight)$$

and the eigenvalues are non-degenerate.

3

AECHANICS Lecture 18

Enrico Iacopini

In the case, for instance, of the **harmonic oscillator**, the energy spectrum is

$$\left\{ E_n = \left(n + \frac{1}{2}\right) \hbar \omega; \ n = 0, 1, \ldots \right\}$$

The corresponding normalized eigenfunctions are

$$\psi_n(x) = \left(rac{m\omega}{\hbar\pi}
ight)^{rac{1}{4}} rac{1}{\sqrt{2^n n!}} e^{-rac{1}{2}rac{m\omega}{\hbar}x^2} \; H_n\left(x\sqrt{rac{m\omega}{\hbar}}
ight)$$

and the eigenvalues are non-degenerate.

3

AECHANICS Lecture 18

Enrico Iacopini

In the case, for instance, of the **harmonic oscillator**, the energy spectrum is

$$\left\{ E_n = \left(n + \frac{1}{2}\right) \hbar \omega; \ n = 0, 1, \ldots \right\}$$

The corresponding normalized eigenfunctions are

$$\psi_n(x) = \left(rac{m\omega}{\hbar\pi}
ight)^{rac{1}{4}} rac{1}{\sqrt{2^n n!}} e^{-rac{1}{2}rac{m\omega}{\hbar} x^2} \; H_n\left(x\sqrt{rac{m\omega}{\hbar}}
ight)$$

and the eigenvalues are non-degenerate.

3

As another example, we can consider the hamiltonian associated to the infinite square well between 0 and +a.
 In this case, the spectrum of is

$$\left\{E_n=\frac{\hbar^2}{2m}\left(\frac{n\pi}{a}\right)^2; \ n=1, 2, \dots\right\}$$

2 The normalized eigenfunctions are

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$

and the eigenvalues are still non-degenerate.

Enrico Iacopini

3

QUANTUM MECHANICS Lecture 18

As another example, we can consider the hamiltonian \hat{H} associated to the infinite square well between 0 and +a. In this case, the spectrum of \hat{H} is

$$\left\{ E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{a} \right)^2; \ n = 1, 2, \dots \right\}$$

The normalized eigenfunctions are

$$\psi_n(x) = \sqrt{rac{2}{a}} \sin\left(rac{n\pi x}{a}
ight)$$

Enrico Iacopini

3

Enrico Iacopini

20 / 21

As another example, we can consider the hamiltonian associated to the infinite square well between 0 and +a.
 In this case, the spectrum of is

$$\left\{ E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{a} \right)^2; \ n = 1, 2, \dots \right\}$$

The normalized eigenfunctions are

$$\psi_n(x) = \sqrt{rac{2}{a}} \sin\left(rac{n\pi x}{a}
ight)$$

and the eigenvalues are still non-degenerate.

Enrico Iacopini

QUANTUM MECHANICS Lecture 18

Still about the eigenvectors of a hermitian operator

In general, we can conclude that the determinate states of any observable Q are described by the eigenvectors of the hermitian operator Q representing that particular observable.

But, as we will see in the next lecture, the opposite is not always true ! Enrico Iacopini

イロト 不得 トイヨト イヨト ニヨー

Still about the eigenvectors of a hermitian operator

- In general, we can conclude that the determinate states of any observable Q are described by the eigenvectors of the hermitian operator Q representing that particular observable.
- But, as we will see in the next lecture, the opposite is not always true !

Enrico Iacopini

イロト 不得 トイヨト イヨト ニヨー