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Hilbert space

In the previous lecture, we have seen that, if fejg
and ffkg are two orthonormal bases of a Hilbert
space, then there exist two square matrices A
and B such that1

fk = Ajk ej; ej = Bkj fk

with AB = I; () A = B`1; B = A`1).

1We are using the Einstein convention for which, when
an index appears twice, it implies summation of that index
over all its possible values.
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Hilbert space

1 The matrices A and B describe also the
effect of the basis change on the
components of a generic vector.

2 In fact, if the components of a generic vector
v in the basis fejg are f¸jg and in the basis
ffkg are f˛kg, then

v ” ¸jej = ¸jBkjfk ” ˛kfk )
) ˛k = Bkj¸j

v ” ˛kfk = ˛kAjkej ” ¸jej )
) ¸j = Ajk˛k

where we have used the fact that, in a basis,
the components of a vector are unique.
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Hilbert space

1 It can be shown that the linear space of the
square-integrable functions  (x) is a Hilbert
space with the following scalar product

<  1j 2 >”
Z

dx  1(x)
˜  2(x)

2 Clearly, the dimension of H is not finite,
which means that the cardinality of any basis
has to be numerable.
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Hilbert space

According to what we have seen, if f jg is an
orthonormal basis of the Hilbert space H of the
square integrable functions in one real variable,
then
1

<  ij j >”
Z

dx  i(x)
˜  j(x) = ‹ij

2 if  2 H
 =

X

j

<  jj >  j ” cj  j

where
cj =

Z

dx j(x)
˜  (x)

3 and, if  is normalized
X

j

jcjj2 = 1
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Operators and Observables

1 So much for the moment about the physical
states and their representation as vectors of a
Hilbert space . . .

2 If the appropriate mathematical structure
in which to describe the states of a
physical system in QM is the Hilbert
space, which is the corresponding
description of the physical observables ?
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Operators and Observables

1 We have already seen that, to evaluate, for
instance, the expectation value of a physical
observable Q = Q(x; p) on a physical state
described by the w.f. ¯(x; t), we need to
calculate the integral

Z

dx¯(x; t)˜
"

Q̂

 

x;`iℏ @
@x

!

¯(x; t)

#

in which we can now recognize the scalar
product of ¯ and Q̂¯, being Q̂ a linear
operator.

2 But, which is the proper definition of a
linear operator in a Hilbert space ?
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Linear operators in a Hilbert space

1 In general, a linear operator Q̂ acting on the
vectors of a Hilbert space must be such that

8a 2 H; Q̂a 2 H

Q̂(a+ b) = Q̂a+ Q̂b

Q̂(¸a) = ¸ Q̂a

2 We have seen that, once we have choosen an
orthonormal basis feig, a vector is
completely determined by its numerical
(complex) components.

3 Do we have something similar for a
linear operator ?
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Linear operators in a Hilbert space

Let us consider an operator Q̂ and a generic
vector a = ¸iei, where feig is a suitable
orthonormal basis. We have

Q̂a = Q̂(¸iei) = ¸i Q̂ei

But, for any vector ei of the basis, we will have

Q̂ei = Qjiej where Qji =< ejjQ̂ei > 2 C

and therefore

Q̂a = ¸i Q̂ei = ¸iQjiej = (Qji¸i)ej )
)< ejjQ̂a >= Qji¸i = Qji < eija >
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Linear operators in a Hilbert space

1 In conclusion, in a given basis feig, the
action of a linear operator Q̂ is described by
a suitable complex matrix Qji =< ejjQ̂ei >,
such that the components of a generic vector
Q̂a are given by

< ejjQ̂a >= Qji¸i

where the f¸ig are the component of the
vector a, in the same basis.

2 Let us see, now, what happens to the
matrix Qji, representing a given linear
operator Q̂, when we change the vector
basis.
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Linear operators in a Hilbert space

1 We have already seen that, if fejg and ffkg
be two orthonormal bases, and

fk = Ajkej; ej = A
`1
kj fk

then, if a is a generic vector such that

a = ¸j ej = ˛k fk

we have

¸j = Ajk ˛k; ˛k = A
`1
kj ¸j

2 Let
< ejjQ̂a >” Qji¸i

< fkjQ̂a >” ~Qkt˛t
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Linear operators in a Hilbert space

1 Therefore

< fkjQ̂a >= ~Qkt˛t = ~QktA
`1
tj ¸j ”

 

~QA`1
!

kj ¸j

2 On the other hand

< fkjQ̂a >=< AikeijQ̂a >= A˜ik < eijQ̂a >=

= A˜ikQij¸j = A
+
kiQij¸j =

 

A+Q

!

kj ¸j

where the matrix A+ ” (At)˜ is the
transposed complex conjugate of the matrix
A, called the hermitian conjugate of A.

3 Given of the arbitrarity of the ¸j, we can
conclude that it must be

~QA`1 = A+Q , ~Q = A+QA
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