QUANTUM MECHANICS Lecture 7

Enrico Iacopini

QUANTUM MECHANICS Lecture 7 The infinite square well

Enrico Iacopini

September 24, 2019

D. J. Griffiths: paragraph 2.2

イロト 不得 トイヨト イヨト ニヨー

Enrico Iacopini

Let us start, now, to solve our first time-independent Schrödinger equation !

@ Assume a potential energy V(x) such that

V(x) = 0 if $0 \le x \le a$ $V(x) = +\infty$ otherwise

This corresponds to a situation where the particle is free in the region $0 \le x \le a$, but, at the two ends of the region (x = 0 and x = a), there is an infinite force that prevents the particle to escape outside from the well.

Enrico Iacopini

Let us start, now, to solve our first time-independent Schrödinger equation !

2 Assume a potential energy V(x) such that

$$V(x) = 0$$
 if $0 \le x \le a$
 $V(x) = +\infty$ otherwise

This corresponds to a situation where the particle is free in the region $0 \le x \le a$, but, at the two ends of the region (x = 0 and x = a), there is an infinite force that prevents the particle to escape outside from the well.

イロト 不得 トイヨト イヨト ニヨー

We can, therefore, assume that $\Psi(x, t) = 0$ when x < 0 or when x > a, because the probability to find the particle outside the well has to be zero. QUANTUM MECHANICS Lecture 7

Enrico Iacopini

Inside the well, the time-independent Schrödinger equation reads

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\,\psi \Rightarrow$$
$$\Rightarrow \frac{d^2\psi}{dx^2} = -k^2\,\psi \quad \text{with} \quad k = \sqrt{\frac{2mE}{\hbar^2}}$$

QUANTUM MECHANICS Lecture 7

э

We can, therefore, assume that $\Psi(x,t) = 0$ when x < 0 or when x > a, because the probability to find the particle outside the well has to be zero. QUANTUM MECHANICS Lecture 7

Enrico Iacopini

Inside the well, the time-independent Schrödinger equation reads

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} = E\,\psi \Rightarrow$$
$$\Rightarrow \frac{d^2\psi}{dx^2} = -k^2\,\psi \quad \text{with} \quad k = \sqrt{\frac{2mE}{\hbar^2}}$$

э

- We have here implicitly assumed that E > 0on a physical basis, since, in this region, the total energy coincides with the kinetic energy which is always positive.
- Prom the mathematical point of view, the case E < 0 would give rise to solutions which are exponentials with a real argument and it would be impossible to fulfill the w.f. continuity conditions at x = 0 and x = a, requiring that $\psi(0) = \psi(a) = 0$.

QUANTUM MECHANICS Lecture 7

Enrico Iacopini

< ロ > < 同 > < 三 > < 三 > <

- We have here implicitly assumed that E > 0on a physical basis, since, in this region, the total energy coincides with the kinetic energy which is always positive.
- From the mathematical point of view, the case E < 0 would give rise to solutions which are exponentials with a real argument and it would be impossible to fulfill the w.f. continuity conditions at x = 0 and x = a, requiring that $\psi(0) = \psi(a) = 0$.

Enrico Iacopini

Enrico Iacopini

The equation that we have obtained

$$rac{d^2\psi}{dx^2}=-k^2\,\psi$$
 with $k=\sqrt{rac{2mE}{\hbar^2}}$

is the classical equation of a harmonic oscillator: its well known solutions are

$$\psi(x) = A \sin kx + B \cos kx$$

with A and B arbitrary integration constants, to be determined with the help of the boundary conditions, defined by the continuity of ψ at x = 0 and x = a.

3

• The ψ continuity at x = 0 implies that B = 0, which means that that

 $\psi(x) = A \sin kx$

whereas the ψ continuity at x = a requires that

$$ka = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$$

The value k = 0 must be escluded, since it will imply that $\psi(x) = 0$ everywhere, and the negative k do not add any new solution, because they correspond to solutions with kpositive and $A \rightarrow -A$.

Enrico Iacopini

QUANTUM MECHANICS Lecture 7

 $\psi(x) = A \sin kx$

whereas the ψ continuity at x = a requires that

$$ka = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$$

2 The value k = 0 must be escluded, since it will imply that $\psi(x) = 0$ everywhere, and the negative k do not add any new solution, because they correspond to solutions with kpositive and $A \rightarrow -A$. QUANTUM MECHANICS Lecture 7

I Therefore, the only possible values for k are the following ones

$$k = rac{n\pi}{a}$$
 with $n = 1, 2, 3, ...$

$$\psi_n(x) = A \sin\left(rac{n\pi x}{a}
ight); \quad n = 1, 2, 3, ...$$

Enrico Iacopini

7 / 19

• Therefore, the only possible values for k are the following ones

$$k = rac{n\pi}{a}$$
 with $n = 1, 2, 3, ...$

and the solutions of the time-independent Schrödinger equation for the infinite potential well are, therefore, the following

$$\psi_n(x) = A \sin\left(rac{n\pi x}{a}
ight); \quad n=$$
 1, 2, 3, ...

QUANTUN MECHANICS Lecture 7

Enrico Iacopini

< ロ > < 同 > < 三 > < 三 > <

Enrico Iacopini

The energy associated to the ψ_n is defined by the time-independent Schrödinger equation itself: we have

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_n}{dx^2} = E_n \psi_n$$
$$\Rightarrow E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{a}\right)^2$$

< ロ > < 同 > < 三 > < 三 > <

As far as the constant *A*, as we already know, due to the linear structure of the Schrödinger equation, it is **arbitrary.**

However, if we require the ψ_n to be **normalized** and **real**, then $(\phi \equiv \frac{n\pi x}{a})$ $1 = \int dx \ |\psi_n(x)|^2 = A^2 \int_0^a dx \sin^2\left(\frac{n\pi x}{a}\right) =$ $= A^2 \frac{a}{n\pi} \int_0^{n\pi} d\phi \sin^2 \phi =$ $= A^2 \frac{a}{n\pi} \int_0^{n\pi} d\phi \frac{1}{2} (1 - \cos 2\phi) =$ $= A^2 \frac{a}{n\pi} \frac{n\pi}{2} = A^2 \frac{a}{2} \implies A = \sqrt{\frac{2}{a}}$ э

Enrico Iacopini

19

QUANTUM IECHANICS

In conclusion, the normalized time – independent solutions of the Schrödinger equation for the infinite square well can be written as

$$\psi_n(x)=\sqrt{rac{2}{a}\,\sin\left(rac{n\pi x}{a}
ight)}$$
 ; $n=$ 1, 2, ...

QUANTUM MECHANICS Lecture 7

Enrico Iacopini

3

• The wave function ψ_1 corresponds to the **ground state**, the physical state of minimal energy, and the other functions ψ_n with n > 1 correspond to **excited states**.

- 2 The ψ_n are alternately even and odd with respect to the center of the well.
- 3 The number of nodes (zeroes) of ψ_n is n-1.

Enrico Iacopini

QUANTUM MECHANICS Lecture 7 September 24, 2019 11 / 19

3

< ロ > < 同 > < 三 > < 三 > <

QUANTUM MECHANICS Lecture 7

• The wave function ψ_1 corresponds to the **ground state**, the physical state of minimal energy, and the other functions ψ_n with n > 1 correspond to **excited states**.

- 2 The ψ_n are alternately even and odd with respect to the center of the well.
- ${ extsf{3}}$ The number of nodes (zeroes) of ψ_n is n-1.

Enrico Iacopini

QUANTUM MECHANICS Lecture 7 September 24, 2019 11 / 19

3

- The wave function ψ_1 corresponds to the **ground state**, the physical state of minimal energy, and the other functions ψ_n with n > 1 correspond to **excited states**.
- 2 The ψ_n are alternately even and odd with respect to the center of the well.
- **③** The number of nodes (zeroes) of ψ_n is n-1.

イロト 不得 トイヨト イヨト ニヨー

The ψ_n , as we have shown in a previous lecture, are mutually orthogonal, which means that, being normalized, they are orthonormal:

$$\int dx \; \psi^*_r(x) \, \psi_s(x) = \delta_{rs}$$

where δ_{rs} is the Kronecker symbol: when both indices are equal its value is 1, otherwise is 0.

This property can also be shown very easily, by performing directly the integrals

イロト 不得 トイヨト イヨト ニヨー

QUANTUM MECHANICS Lecture 7

The ψ_n , as we have shown in a previous lecture, are mutually orthogonal, which means that, being normalized, they are orthonormal:

$$\int dx \; \psi^*_r(x) \, \psi_s(x) = \delta_{rs}$$

where δ_{rs} is the Kronecker symbol: when both indices are equal its value is 1, otherwise is 0.

This property can also be shown very easily, by performing directly the integrals QUANTUN MECHANICS Lecture 7

Enrico Iacopini

イロト 不得 トイヨト イヨト ニヨー

- The functions ψ_n are an orthonormal and complete set of functions in the domain 0 ≤ x ≤ a.
- 2 As a matter of fact, any continuous function f(x) such that f(0) = f(a) = 0 can be written in the segment [0, a] as a linear combination of them:

$$f(x) = \sum_n c_n \, \psi_n(x)$$

which is nothing but the Fourier expansion.

Because of the orthonormality of the ψ_n , the expansion coefficients c_n are simply given by

$$c_n = \int dx \ \psi_n^*(x) \cdot f(x)$$

Enrico Iacopini

QUANTUM MECHANICS Lecture 7

- The functions ψ_n are an **orthonormal** and **complete** set of functions in the domain $0 \le x \le a$.
- As a matter of fact, any continuous function f(x) such that f(0) = f(a) = 0 can be written in the segment [0, a] as a linear combination of them:

$$f(x) = \sum_n c_n \, \psi_n(x)$$

which is nothing but the Fourier expansion.

Because of the orthonormality of the ψ_n , the expansion coefficients c_n are simply given by

$$c_n = \int ax \ \psi_n(x) \cdot J(x)$$

Enrico Iacopini

A = A = A = O Q Q

QUANTUM MECHANICS Lecture 7

- The functions ψ_n are an **orthonormal** and **complete** set of functions in the domain $0 \le x \le a$.
- As a matter of fact, any continuous function f(x) such that f(0) = f(a) = 0 can be written in the segment [0, a] as a linear combination of them:

$$f(x) = \sum_n c_n \, \psi_n(x)$$

which is nothing but the Fourier expansion.

Secause of the orthonormality of the ψ_n , the expansion coefficients c_n are simply given by

$$c_n = \int dx \; \psi_n^*(x) \cdot f(x)$$

Enrico Iacopini

3

13 / 19

QUANTUM MECHANICS Lecture 7

This means that, the most **general solution** of the **time** – **dependent** Schrödinger equation reads

$$\Psi(x,t) = \sum_{n} c_n \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right) e^{-iE_nt/\hbar}$$

where

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2} = \frac{1}{2m} \left(\frac{n\pi\hbar}{a}\right)^2$$
$$c_n = \int dx \ \psi_n^*(x) \ \Psi(x, 0)$$

QUANTUM MECHANICS Lecture 7

Enrico Iacopini

イロト 不得 トイヨト イヨト ニヨー

Lecture 7

Enrico Iacopini

There is any physical meaning in the expansion coefficients c_n ?

2 Let us start by observing that

$$\sum_{n} |c_n|^2 = 1$$

Enrico Iacopini

QUANTUM MECHANICS Lecture 7 September 24, 2019 15 / 19

э.

Lecture 7

Enrico Iacopini

• There is any physical meaning in the expansion coefficients c_n ?

2 Let us start by observing that

$$\sum_{n} |c_n|^2 = 1$$

Enrico Iacopini

イロト 不得 トイヨト イヨト ニヨー

In fact, from the normalization of the w.f. $\Psi,$ we have $^{(\ast)}$

$$1 = \int dx |\Psi(x, 0)|^2 =$$

= $\int dx \left(\sum_r c_r \psi_r(x)\right)^* \left(\sum_s c_s \psi_s(x)\right) =$
= $\sum_{r,s} c_r^* c_s \int dx \, \psi_r^*(x) \psi_s(x) =$
= $\sum_{r,s} c_r^* c_s \, \delta_{rs} = \sum_r |c_r|^2$

(*) Why it is enough to consider the normalization condition at t = 0 ?

Enrico Iacopini

3

(日)

QUANTUM MECHANICS Lecture 7

Moreover, it turns out that the **energy expectation value** (constant in time !) is given by

$$\langle H \rangle = \sum_{s} E_{s} |c_{s}|^{2}$$

In fact

$$< H >= \int dx \,\Psi^*(x,t) \left[\hat{H} \,\Psi(x,t) \right] =$$

$$= \int dx \left(\sum_r c_r \psi_r e^{-iE_r t/\hbar} \right)^* \left[\hat{H} \left(\sum_s c_s \psi_s e^{-iE_s t/\hbar} \right) \right] =$$

$$= \sum_{r,s} c_r^* c_s \, e^{i(E_r - E_s)t/\hbar} \, E_s \int dx \,\psi_r^* \,\psi_s =$$

$$= \sum_s |c_s|^2 E_s$$

QUANTUM MECHANICS Lecture 7

Enrico Iacopini

- From these two results, it is easy to understand the physical meaning of the expansion coefficients Cn.
- 2 The quantity $|c_n|^2$ gives the probability that a measurement of the total energy on the physical state under consideration would yield the value E_n .
- This conclusion is absolutely general: it holds for any physical system.

3

< ロ > < 同 > < 三 > < 三 > <

Enrico Iacopini

- From these two results, it is easy to understand the physical meaning of the expansion coefficients Cn.
- The quantity $|c_n|^2$ gives the probability that a measurement of the total energy on the physical state under consideration would yield the value E_n .
- This conclusion is absolutely general: it holds for any physical system.

3

< ロ > < 同 > < 三 > < 三 > <

Enrico Iacopini

- From these two results, it is easy to understand the physical meaning of the expansion coefficients Cn.
- The quantity $|c_n|^2$ gives the probability that a measurement of the total energy on the physical state under consideration would yield the value E_n .
- This conclusion is absolutely general: it holds for any physical system.

3

< ロ > < 同 > < 三 > < 三 > <

Enrico Iacopini

Evaluate the expectation values $\langle x \rangle$ and $\langle p \rangle$, together with the standard deviations σ_x and σ_p on the first excited state, represented by the w.f. $\Psi_2(x,t)$

$$\psi_2(x) = \sqrt{rac{2}{a} \, sin\left(rac{2\pi x}{a}
ight)} \,\,\,\, for \,\,\,\, 0 \leq x \leq a$$

and verify the uncertainty relation.

イロト 不得 トイヨト イヨト ニヨー