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General solution of the Schrödinger
equation

1 In the previous lecture we have said that the
procedure to find the general solution of
the time dependent Schrödinger equation,
for an initial condition ¯(x; 0), is as follows.

2 We solve the time-independent Schrödinger
equation, which, in general, has infinite
solutions  1(x); :::;  n(x); ::: corresponding
to different energies E1; :::; En; :::

3 We write ¯(x; 0) as a linear combination of
the above stationary solutions, i.e.

¯(x; 0) =
X

n

cn  n(x)

where the cn are suitable complex
coefficients.
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General solution of Schrödinger
equation

1 We define the function

¯(x; t) =
X

n

cn e
`iEnt=ℏ  n(x)

2 Since it is a linear combination of solutions of
the time` dependent Schrödinger equation,
it is certainly one of its possible solutions.

3 At t = 0, the w.f. ¯(x; t) satisfies the initial
condition that we have imposed, therefore
it is the solution that we were looking
for, because the solution with a given
initial condition is unique.
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About the time dependence

1 Let us come again, now, to the argument of
the time dependence af the quantum
observables . . . .

2 We have seen that each stationary state
describes a physical state which appears
"frozen" in time: no time dependence of
any physical quantity !

3 But things do change in time . . .
how it happens ?
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About the time dependence

1 Suppose that

¯(x; 0) = c1  1(x) + c2  2(x)

where, for sake of simplicity, c1 and c2 are
real numbers such that c21 + c

2
2 = 1 and

 1;  2 are real normalized (orthogonal)
stationary solutions, corresponding to the
energies E1 and E2, with E1 6= E2.

2 Then the time-dependent solution reads

¯(x; t) = c1  1(x) e
`iE1t=ℏ + c2  2(x) e

`iE2t=ℏ ”
” c1¯1(x; t) + c2¯2(x; t)
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About the time dependence

Let us see, for instance, how it behaves in time
the expectation value of the position x.

If we define ´E ” E2 ` E1, then we have

< x > =

Z

dx (c1¯1 + c2¯2)
˜ x (c1¯1 + c2¯2) =

= c21 < x >1 +c
2
2 < x >2 +

+ 2c1 c2 cos

 

´Et

ℏ

!
Z

dx  1(x)
˜ ´  2(x) ´ x

which shows that the expectation value < x >

evaluated on this state, now, has a term which is
oscillating in time, proportional to

Z

dx  1(x)
˜ ´  2(x) ´ x

Enrico Iacopini QUANTUM MECHANICS Lecture 6 September 18, 2019 6 / 9



QUANTUM
MECHANICS
Lecture 6

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Some relevant properties of the time
independent solutions  

1 Let  (x) be a solution of the time
independent Schrödinger equation for the
energy E: we have

d2 

dx2
=
2m

ℏ2

"

V (x)` E
#

 (x) (1)

2 This implies that  (x) admits the second
derivative, therefore d 

dx
and  must be

differentiable and, therefore, also
continuous functions.

3 If the potential energy V (x) is differentiable
() F (x) ” `dV

dx
if a regular function...),

from eq.(1) we conclude that also d2 
dx2
is

differentiable, and, therefore, continuous.
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Some relevant properties of the time
independent solutions  

1 Assume, now, that V (x) changes abruptly
between x0 ` › and x0 + › by a relevant
quantity ´V0. Consider the identity
Z x0+›

x0`›
dx
d2 

dx2
=

Z x0+›

x0`›
dx
2m

ℏ2

"

V (x)` E
#

 (x)

2 The integral on the left side is the difference
Z x0+›

x0`›
dx
d2 

dx2
=
d 

dx

˛

˛

˛

˛

˛

(x0+›)
` d 

dx

˛

˛

˛

˛

˛

(x0`›)

3 The integrand at the right side is limited
and, therefore, the integral goes to zero
when ›! 0.
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Some relevant properties of the time
independent solutions  

1 This means that, also if V presents at x = x0
a step of finite amplitude ´V0, d dx remains
continuous in x = x0 (and the same for  !).

2 However, if the discontinuity in V (x) is
infinite, we will see later that only  remains
continuous . . .

3 In conclusion:

V (x) regular : )  ;
d 

dx
;
d2 

dx2
continuous

´V0 finite : )  ;
d 

dx
continuous

´V0 infinite : )  continuous
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