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Stationary states

1 It is time, now, to see how to
solve the Schrödinger equation

iℏ@¯
@t
= ` ℏ

2

2m

@2¯

@x2
+ V ¯

2 We will proceed under the hypothesis that
the potential energy V = V (x) is time
independent.
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Stationary states

1 The Schrödinger equation is a linear
differential equation, which means that if
¯a and ¯b are solutions, then also
¯ = ¸¯a + ˛¯b

is a solution, for any value of the complex
numbers ¸ and ˛.

2 This property gives us the idea to start
looking for a subset of "simple"
solutions of the Schrödinger equation, and
then try to get any possible solution simply
as their linear combination.
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Stationary states

1 Naturally, the possibility of obtaining the
most general solution of the Schrödinger
equation as linear combination of this subset
of "simple" solutions must be
demonstrated . . . !

2 But, one thing at the time ...
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Stationary states

1 However, which are the "simple" solutions
that we have in mind ?

2 Let us look for solutions in which the spatial
and time dependence are factorized

¯(x; t) =  (x) ´ ffi(t)

3 From the Schrödinger equation, we obtain

 (x)

"

iℏdffi(t)
dt

#

= ffi(t)

"

` ℏ
2

2m

d2 (x)

dx2
+ V (x) (x)

#
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Stationary states

1 Now, if we divide both sides of the equation
by ¯(x; t) =  (x) ´ ffi(t), we get

1

ffi(t)

"

iℏdffi(t)
dt

#

=
1

 (x)

2

4` ℏ
2

2m

d2 (x)

dx2
+ V (x) (x)

3

5

2 But the left hand side of the equation
depends only on the time t, whereas the right
hand side depends only on the position x.

3 The only possibility to satisfy the equation is
that both sides are in fact constant.
Let us call E this constant.

4 We will see in a moment that E must also
to be a real quantity.
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Stationary states

1 The original Schrödinger linear partial
differential equation then factorizes in two
ordinary linear differential equations

iℏdffi(t)
@t

= E ffi(t) (1)

` ℏ
2

2m

d2 (x)

dx2
+ V (x) (x) = E  (x) (2)

2 The solution of equation (1) is quite
straightforward:

ffi(t) = Ae`iEt=ℏ ! ffi(t) = e`iEt=ℏ

where it is understood that the integration
constant A will be absorbed into  itself.
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Stationary states

Equation (2)

Ĥ  (x) ” ` ℏ
2

2m

d2 (x)

dx2
+ V (x) (x) = E  (x)

is called the time-independent Schrödinger
equation and, to solve it, we need to know the
esplicit form of the potential energy V (x).
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Stationary states

In conclusion, the "simple" solutions of the
Schrödinger equation that we were looking for,
have the following general structure

¯(x; t) = e`iEt=ℏ  (x)

where  is a solution of the time-independent
Schrödinger equation for the energy value E and,
for these "simple" solutions, both the following
equations are satisfied

iℏ@¯(x; t)
@t

= E¯(x; t)

Ĥ¯(x; t) ”
"

` ℏ
2

2m

@2

@x2
+ V (x)

#

¯(x; t) =

= E¯(x; t)
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Why E must be real

Before considering in more detail the properties
of these solutions, let us convince ourselves that
the constant E, that couples the two
equations, must be real.
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Why E must be real

We have already anticipated in the previous
lecture that the hamiltonian operator
Ĥ ” ` ℏ2

2m
d2

dx2
+ V(x) is such that

Z

dx¯˜2(x; t) ´
"

Ĥ¯1(x; t)

#

=

=

Z

dx

"

Ĥ¯2(x; t)

#˜
´¯1(x; t)

for any wave functions ¯1 and ¯2 which are
square-integrable (in the x variable).
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Why E must be real

1 Assume now ¯1 = ¯2 ” ¯: we have
Z

dx
“

Ĥ¯
”˜
 =

Z

¯˜
“

Ĥ¯
”

2 but, in our case, Ĥ¯ = E¯, therefore

E˜
Z

dx j¯j2 = E

Z

dx j¯j2

Since the integral is certainly different from
zero (it is equal to 1 if ¯ is normalized ...),
this requires that E = E˜.
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Stationary states

1 Let us come, now, to consider in more detail
the properties of the "simple" solutions

¯(x; t) = e`iEt=ℏ  (x)

of the Schrödinger equation.
2 They describe stationary states.

No matter the value of E is, the pdf
j¯(x; t)j2 is time-independent. In fact

j¯(x; t)j2 = eiEt=ℏ  ˜(x) e`iEt=ℏ  (x) = j (x)j2

3 This means that the probability density
j¯(x; t)j2 dx to find the particle between x
and x+ dx does not change with time.
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Stationary states

On a stationary state, any dynamical variable
Q, represented by the operator Q(x;`iℏ @

@x
),

will have its expectation value
time-independent: in fact

< Q > =

Z

dx¯˜(x; t)

"

Q
 

x;`iℏ @
@x

!

¯(x; t)

#

=

=

Z

dx eiEt=ℏ ˜(x)

"

Q
 

x;`iℏ @
@x

!

e`iEt=ℏ (x)

#

=

=

Z

dx ˜(x)

"

Q
 

x;`iℏ @
@x

!

 (x)

#
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Stationary states

1 In particular, the expectation value of the
position x will be time-independent

< x(t) > =

Z

dx eiEt=ℏ ˜(x)x e`iEt=ℏ (x) =

=

Z

dx j (x)j2 ´ x

and, therefore (Ehrenfest theorem)
< p >” m d

dt
< x(t) >= 0 at any time.

2 A stationary state represents a kind of
"frozen" physical state, where nothing
changes with time.
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Stationary states

1 Let us show, now, that the stationary states
have a definite total energy.

2 We have already remarked that the operator

Ĥ ” ` ℏ
2

2m

@2

@x2
+ V (x)

represents the dynamical variable
H(p; x) = p2

2m
+ V (x), which is the

hamiltonian of the system.
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Stationary states

1 We have also seen that, on a stationary
state, the time` independent Schrödinger
equation simply reads

Ĥ¯(x) = E¯(x)

2 Therefore, the hamiltonian expectation value
on a stationary state is

< H >=

Z

dx ˜(x)

 

Ĥ (x)

!

= E

Z

dx j j2 = E

which justifies the name "E" we gave to this
constant.
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Stationary states

1 More important, on a stationary state
there is no energy uncertainty. In fact

< H2 >=

Z

dx ˜(x)

 

Ĥ2 (x)

!

=E2
Z

dx j j2=E2

which implies a null standard deviation

ff2H =< H2 > ` < H >2= 0

2 In other words, if we measure the total
energy of any stationary state, we always
obtain with certainty the value E,
characterizing that particular state.
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Ĥ2 (x)

!

=E2
Z

dx j j2=E2

which implies a null standard deviation

ff2H =< H2 > ` < H >2= 0

2 In other words, if we measure the total
energy of any stationary state, we always
obtain with certainty the value E,
characterizing that particular state.

Enrico Iacopini QUANTUM MECHANICS Lecture 5 September 17, 2019 18 / 23



QUANTUM
MECHANICS
Lecture 5

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Orthogonality of the  n

1 Let us show, now, that time-independent
solutions of the Schrödinger equation
corresponding to different energies, are
mutually orthogonal:

Z

dx  ˜1(x) 2(x) = 0

where, by hypothesis, Ĥ 1 = E1 1,
Ĥ 2 = E2 2 and E1 6= E2.

2 We already know that Ĥ is such that, for any
 1 and  2 square-integrable, we have

Z

dx ˜1
“

Ĥ 2
”

=

Z

dx
“

Ĥ 1
”˜
 2
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Orthogonality of the  n

1 but

Ĥ 1 = E1  1; Ĥ 2 = E2  2

therefore we obtain that

E1

Z

dx ˜1 2 = E2

Z

dx ˜1 2

2 Since E1 6= E2 by hypothesis, the integral
Z

dx ˜1 2

must be equal to zero.
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General solution of the Schrödinger
equation

1 Up to now, we have seen some interesting
properties of the solutions  of the
time-independent Schrödinger equation.

2 But how these functions can help, in order to
find the most general solution of the
time-dependent Schrödinger equation ?

3 In other words, if we know that a given
physical state is represented, at t = 0, by the
wave function ¯(x; 0) (initial condition),
what should we do in order to determine
the wave function at any other time t ?
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General solution of the Schrödinger
equation

1 The procedure to find the general solution
of the time dependent Schrödinger
equation is as follows.

2 We start by solving the time-independent
Schrödinger equation, which, in general, has
infinite solutions  1(x); :::;  n(x); :::
corresponding to the energies E1; :::; En; :::

3 It turns out that ¯(x; 0) can always be
written as a linear combination of the
stationary solutions, i.e.

¯(x; 0) =
X

n

cn  n(x)

with suitable complex coefficients cn.
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General solution of Schrödinger
equation

1 Let us define,now, the function

¯(x; t) =
X

n

cn e
`iEnt=ℏ  n(x)

2 Since it is a linear combination of solutions of
the time` dependent Schrödinger equation,
it is certainly one of its possible solutions.

3 At t = 0, ¯(x; t) satisfies the initial
condition that we have assumed, therefore
it is the solution that we were looking
for, because the solution with a given
initial condition is unique.
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