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Linear operators: a first view

In the previous lecture, we have seen that

since for a point-like particle, every
mechanical quantity Q can be expressed in
terms of position and linear momentum;
since to the position and the momentum we
have to associate the linear operators
x̂! x´
p̂! `iℏ @

@x

it will be possible to associate to every physical
observable Q a QM operator Q as follows

Q(x; p)! Q (x̂; p̂) ” Q
 

x;`iℏ @
@x

!
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Linear operators: a first view

1 Let us take, f.i., the kinetic energy T = p2

2m
.

According to the above rule, the QM
operator T̂ associated to T is T̂ = ` ℏ2

2m
@2

@x2
,

which means, in particular, that, as far as the
expectation value of T is concerned, we have

< T >=

Z

dx¯˜(x; t)

"

` ℏ
2

2m

@2

@x2

 

¯(x; t)

!#

2 For the potential energy, the QM operator V̂
is simply V (x̂) = V (x), which means that its
expectation value on the state described by
the normalized w.f. ¯(x; t) will be

< V >=

Z

dx¯˜(x; t)

"

V (x)¯(x; t)

#
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Linear operators: a first view

1 The QM operator associated to the particle
hamiltonian(˜) H = H(p; x) = T (p) + V (x) is

Ĥ = ` ℏ
2

2m

@2

@x2
+ V (x)

2 and we recognize in Ĥ the operator present in
the right hand side of the Schrödinger
equation, acting on the wave-function ¯(x; t)
(and this is not by chance . . . ).

(*) From Classical Mechanics we remember that

dx

dt
=
@H

@p
;

dp

dt
= `@H

@x
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Linear operators: a first view

Therefore, the expectation value E of the
particle total energy is given by

E = < H >=

Z

dx¯˜(x; t)

"

Ĥ¯(x; t)

#

=

=

Z

dx¯˜(x; t)

" 

` ℏ
2

2m

@2

@x2
+ V (x)

!

¯(x; t)

#

=

=

Z

dx¯˜(x; t)

"

iℏ @
@t
¯(x; t)

#

where, for the last conclusion, we have used the
Schrödinger equation.
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Linear operators: a first view

1 Before leaving the argument, let us point out
an important property of the momentum
operator p̂ = `iℏ @

@x
.

2 Let ¯1 and ¯2 be two (wave)functions such
that ¯1;2(x)! 0 when x! ˚1.
Let us consider the quantity
Z

dx¯˜2(x; t) (p̂¯1) (x; t) ” `iℏ
Z

dx¯˜2
@¯1

@x
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Linear operators: a first view

1 However

¯˜2
@¯1

@x
=

@

@x

“

¯˜2¯1
”

`
@¯˜2
@x

¯1

and the total derivative does not contribute
to the integral because, by hypothesis,
¯1;2(x)! 0 when x! ˚1.

2 Therefore
Z

dx¯˜2(x; t) (p̂¯1) (x; t) = iℏ
Z

dx
@¯˜2
@x
¯1 =

=

Z

dx

 

`iℏ@¯2
@x

!˜
¯1 ”

Z

dx (p̂¯2)
˜¯1
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Linear operators: a first view

This property for which we have, in particular,
that

Z

dx¯˜ (p̂¯) =

Z

dx (p̂¯)˜¯ (1)

ensures that the momentum expectation value
< p > is, as it should be, a real quantity !
In fact, since

< p >=

Z

dx¯˜
 

`iℏ@ 
@x

!

”
Z

dx¯˜ (p̂¯)

then

< p >˜=

Z

dx¯(p̂¯)˜

and, because of the identity (1), < p > and
< p >˜ do coincide !
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Linear operators: a first view

1 But every dynamical variable Q, represented
by an operator Q, must have a real
expectation value on any physical state.
As a matter of fact, as we will see later on,
for every Q we will indeed have that

Z

dx¯˜2 (Q¯1) =
Z

dx (Q¯2)˜¯1

2 We will come again on this property.
For the moment, let us only point out and
remember that, because of this, for the
hamiltonian we have

Z

dx¯˜2
“

Ĥ¯1
”

=

Z

dx
“

Ĥ¯2
”˜
¯1

Enrico Iacopini QUANTUM MECHANICS Lecture 4 September 11, 2019 9 / 17



QUANTUM
MECHANICS
Lecture 4

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Linear operators: a first view

1 But every dynamical variable Q, represented
by an operator Q, must have a real
expectation value on any physical state.
As a matter of fact, as we will see later on,
for every Q we will indeed have that

Z

dx¯˜2 (Q¯1) =
Z

dx (Q¯2)˜¯1

2 We will come again on this property.
For the moment, let us only point out and
remember that, because of this, for the
hamiltonian we have

Z

dx¯˜2
“

Ĥ¯1
”

=

Z

dx
“
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The uncertainty principle

1 Let us consider, now, the physical state
described by the normalized w.f.

¯(x; 0) =

v

u

u

t

1

s
p
2ı

e
` (x`a)

2

4s2 ” Ae
` (x`a)

2

4s2

We have already seen that, for the position
expectation value, we have < x >= a and
that the corresponding standard deviation is
ffx = s.

2 But what about the momentum ?
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The uncertainty principle

As far as its expectation value, we have

< p > = `iℏ
Z

dx¯˜
@¯

@x
=

= `iℏA2
Z

dx e
`(x`a)2

4s2

 `2(x` a)
4s2

e
`(x`a)2

4s2

!

=

= `iℏA2
Z

dy e
`y2
4s2 (` 2y

4s2
) e

`y2
4s2 =

= iℏA2 1
2s2

Z

dy e
`y2
2s2 y = 0

where we have put y ” x` a.

Enrico Iacopini QUANTUM MECHANICS Lecture 4 September 11, 2019 11 / 17



QUANTUM
MECHANICS
Lecture 4

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The uncertainty principle

Concerning < p2 >=< `ℏ2 @2
@x2

>, we have

< p2 > = `ℏ2
Z

dx¯˜
@2¯

@x2
=

= `ℏ2A2
Z

dx e
`(x`a)2

4s2

0

@

@2

@x2
e
`(x`a)2

4s2

1

A =

= `ℏ2A2
Z

dy e
`y2
4s2

0

@

@2

@y2
e
`y2
4s2

1

A

But

@2

@y2
e
`y2
4s2 =

@

@y

 

` 2y
4s2

e
`y2
4s2

!

=

=

2

4` 1

2s2
+
y2

2s2
1

2s2

3

5 e
`y2
4s2
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The uncertainty principle

Therefore

< p2 > = `ℏ2A2
Z

dy e
`y2
4s2

"

` 1

2s2
+
y2

2s2
1

2s2

#

e
`y2
4s2 =

= `ℏ
2A2

2s2

Z

dy e
`y2
2s2

"

`1 + y2

2s2

#

=

= `ℏ
2A2

2s2
s
p
2

Z

dz e`z
2
"

`1 + z2
#

where we have defined z ” y

s
p
2
.

But
Z

dz e`z
2
=
p
ı
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The uncertainty principle

whereas
Z

dz e`z
2
z2 = ` d

d¸

˛

˛

˛

˛

˛

¸=1

Z

dz e`¸z
2
=

= ` d

d¸

˛

˛

˛

˛

˛

¸=1

s

ı

¸
=
1

2

p
ı

therefore

< p2 > = `ℏ
2A2

2s2
s
p
2

"

`
p
ı +

1

2

p
ı

#

=

= A2
ℏ2
p
2s

"

1

2

p
ı

#

=
1

s
p
2ı

ℏ2
p
2s

1

2

p
ı =

=
ℏ2

4s2

Enrico Iacopini QUANTUM MECHANICS Lecture 4 September 11, 2019 14 / 17



QUANTUM
MECHANICS
Lecture 4

Enrico Iacopini

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The uncertainty principle

1 Since < p >= 0, the standard deviation for
the momentum distribution is then

ffp =
ℏ
2s

and one has

ffx ffp = s
ℏ
2s
=
ℏ
2

2 This result shows that, at least on the w.f.
we were considering, the position and
momentum uncertainties cannot be both
reduced as much as we want, since their
product must remain constant.
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The uncertainty principle

This is a general feature.

We will show that, for any
w.f., one obtains

ffx ffp –
ℏ
2

The gaussian case is the
more favourable !

1 It is the Heisenberg uncertainty principle.
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The uncertainty principle
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Exercise N.2

The physical state of a particle is represented at
t = 0 by the following w.f.

¯(x; 0) = A(x2 ` 4a2) for jxj » 2a
 (x; 0) = 0 for jxj > 2a

where A and a are positive constants.

a) determine the normalization constant A;
b) calculate the expectation value of x;
c) calculate the expectation value of p;
d) find ffx;
e) find ffp;
f) evaluate the product ffx ffp.
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